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ABSTRACT 

Aluminum part ic les  (5p mean diameter) were injected into a small circu- 
lar combustor by a secondary flow process used fo r  transverse mode s t a b i l i t y  
rating. Small mass concentrations of  aluminum were found t o  be effective i n  
suppressing instabi l i ty .  
below which the e f fec t  was destabilizing. 

rl z 
d 
I w A c r i t i c a l  concentration of 2/100 percent was noted 

INTRODUCTION 

The addition of  small fractions of aluminum powder to the  composition 
of sol id  propellants is an effect ive method of suppressing combustion icsta- 
b i l i t y  i n  many engine configurations. This suppressive action w a s  demonstra- 
ted i n  tests with a small two-dimensional c i rcular  combustor (1) where a one- 
half percent mass addition of  aluminum suppressed in s t ab i l i t y  over a broad 
range of t e s t  conditions which were increasingly unstable without aluminum. 
A l s o ,  secondary injection o f  aluminum part ic les  produced the  same suppressive 
e f fec t  as when it w a s  incorporated i n  the propellant grain. It w a s  concluded 
tha t  the  suppressive action occurs i n  the gas phase above the burning surface 
rather than a l t e r ing  surface reactions and tha t  par t iculate  damping is  the 
stab ili z ing mechanism. 

With par t iculate  damping as the s tab i l iz ing  mechanism the injection of 
aluminum should be equally effect ive i n  suppressing in s t ab i l i t y  i n  l iquid and 
sol id  propellant combustors. The sens i t iv i ty  of the two-dimensional c i rcular  
combustor t o  small fractions of  aluminum and the  ava i lab i l i ty  o f  a l iquid 
propellant version of t h i s  combustor prompted t h i s  experiment. Aluminum par- 
t i c l e s  were introduced by a secondary flow process s i m i l a r  t o  tha t  used i n  
the sol id  propellant tests and the  e f fec t  ob the  s t a b i l i t y  of a hydrogen- 
oxygen combustor was  evaluated. 

LIQUID F’R0PEL;LANT COMBUSTOR 

Configuration and performance, - The basic configuration of the l iquid 
propellant combustor, figure 1, is i l l u s t r a t ed  by the version used fo r  photo- 
graphic studies of  j e t  burning (3, 4). The combustion chamber i s  a short  cy- 
l i nd r i ca l  cavity 8 inches i n  diameter and 1/2 inch long. 
gaseous hydrogen w a s  injected rad ia l ly  from the circumference and the combus- 
t ion  gas flow was also radial. With t h i s  design, traveling transverse acous- 

Liquid oxygen and 
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t i c s  mode i n s t a b i l i t y  can be studied a t  reasonably low frequencies f o r  a low 
thrust  l eve l  combustor. The frequency is about 4500 cps .for a thrust  leve l  
of 100-200 pounds. 

Injectors used i n  t h i s  configuration have given s table  combustion dur- 
ing noma1 operation. 

ference. 
promoted unstable operation. 
behavior of a veloci ty  sensi t ive combustion process (4). 

It has always been possible to produce unstable opera- 

This secondary flow caused angular flow o f  the combustion gases and 
L t ion,  however, by tangent ia l  inject ion of secondary gas flow a t  the  circum- 

The in s t ab i l i t y  is  at t r ibuted to the  nonlinear 

S tab i l i t y  rating. - The degree of i n s t ab i l i t y  is  related t o  the flow r a t e  
of secondary gas. Such a re la t ion  provides a method of ra t ing  the s t a b i l i t y  
o f  an injector  configuration or  operating condition. , One method o f  implement- 
ing t h i s  ra t ing  technique i s  t o  ramp the secondary flow r a t e  and observe the 
change i n  dynamic behavior. A typ ica l  combustor t e s t  run is shown i n  figure 2. 
Gaseous nitrogen, the secondary gas normally used, is  introduced after equi l i -  
brium combustion is  established. The combustion pressme osci l la t ions a re  
shown t o  increase with an increase i n  secondary flow rate, 
gives both a threshold flow rate a t  the onset of i n s t ab i l i t y  and a re la t ion  
between flow r a t e  and pressure amplitude. 

constant oxygen flow r a t e  f o r  the  injector  used i n  the t e s t s  of aluminum. in- 
jection i s  shown i n  figure 3. Pressure amplitude is  shown as a function of 
tangential  impulse of the secondary flow which theoret ical ly  determines the 
angular velocity. 
b i l i t y  increases with an increase i n  hydrogen flow rate. 
s t a b i l i t y  a t  high hydrogen flow rates. 
with secondary flow r a t e  i n  the  low amplitude region. 
of s t a b i l i t y  are resolved as three pa ra l l e l  l ines  - a character is t ic  t o  be 
used i n  interpret ing the r e su l t s  of aluminum addition, This l inear  behavior 
i s  lost at higher pressure amplitudes, par t icular ly  when secondary flow rate 
inereases the mean combustor pressure and af fec ts  the  propellant flow rates. 

This type of t e s t  

The ef fec t  on s t a b i l i t y  of a change i n  hydrogen flow r a t e  a t  essent ia l ly  

The threshold secondary flow rate fo r  the  onset of insta-  
It implies improved 

Ppessure amplitude increases l inear ly  
The three conditions 

Scaled versions of concentxic tube injector  elements f o r  large thrus t  
combustors were used i n  t h i s  study, f i g w e  4. 
hydrogen flow rates observed with these elements is consistent w i t h  t h a t  f o r  
large thrust combustors. 
Lewis Research Center (5) 
operation w a s  used to rate f o r  s tab i l i ty ,  
with an increase i n  hydrogen flow rate. 
Such minimum temperatures cannot be d i rec t ly  compared t o  the tangential  i m -  
pulse uni t s  used f o r  s t a b i l i t y  ra t ing  i n  t h i s  study. 
centr ic  tube elements, however, can be related t o  the hydrogen inject ion pres- 
sure drop which controls the dynamic coupling between hydrogen flow rate and 
combustor pressme (6). Using equivalent pressure drop changes as a basis of 
comparing the two s t a b i l i t y  ra t ing  techniques, a loo to 20' R decrease i n  the  
minimum hydrogen'temperature is roughly comparable t o  an increase, of 1 t o  2 
tangent ia l  impulse units. 

The s tab i l iz ing  e f fec t  of high 

I n  the 20,000 pound thrus t  st-ddies performed a t  the 
a minimwn hydrogen illgeetion temperature fo r  s table  

The m i n i m  temperature decreased 
This implies improved s tab i l i ty .  

S t ab i l i t y  of these con- 
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The experimental technique employed t o  in j ec t  aluminum into the l iquid 
combustor w a s  adapted from the so l id  propellant apparatus (1) shown i n  fig- 
ure 5. 
chamber. This 

charge shaped t o  give an increase i n  flow rate with t i m e  as indicated i n  f ig -  
ure 6 by the  gas generator flow. 
without aluminum addition from which a flow r a t e  f o r  the onset of i n s t ab i l i t y  
and the increase i n  pressure amplitude with flow rate can be established. 
Small fractions of aluminum powder added t o  so l id  propellant i n  e i ther  the  
combustor o r  the  gas generator completely suppressed t h i s  transverse mode 
instabi l i ty .  
mechanism of aluminum powder and prompted the l iquid combustor tests. 

The sol id  propellant is cast  as a r ing  a t  the circumference of the  
Tangential gas injection is used t o  cause unstable operation. 

a secondary gas injection is  supplied by a gas generator with a sol id  propellant 

Figure 6 shows a typical  experimental test  

The result led t o  t he  conclusion about the  par t iculate  damping 

The technique of using a s o l i d  propellant gas generator t o  introduce 
aluminum par t ic les  i n  the secondary flow was adapted fo r  the l iquid combustor 
tests, 
used. 
gression rate and ramping t i m e  of the secondary flow. 
t ion  tests, f ine  aluminum powder ( 5 ~  mean weight diameter) w a s  added t o  the 
composit ion, 

An ammonium perchlorate and polybutadiene acryl ic  acid composition was 
The r a t i o  of ground t o  uiground oxidizer w a s  varied t o  change the re- 

For the aluminum addi- 

A comparison of the s t a b i l i t y  ra t ing  of  the  l iquid combustor using gase- 
ous nitrogen and the sol id  propellant gas generator witho.uk aluminum addition 
is shown i n  figure 7. 
sure amplitudes fo r  a given tangential  impulse are lower than those presented 
i n  f i g m e  3. Secondary injection was along a chordal path fo r  the figure 7 
tests rather  than the tangential  path of the previous tests. 
jection of hot gases cause injector  face burning which necessitated the use 
of a chordal path. 

The two gases give nearly ident ical  results.  The pres- 

Tangential in-  

RESULTS AW DISWSSIQW OF ALUMINUM INJECTION 

S tab i l i t y  ratings of the  l iquid combustor using sol id  propellant gas 
generators w i t h  and without the 112 percent by weight aluminum addition are 
compared i n  figure 8, 
duction i n  ammtude for  a gimji j e t  impulse. 
tests i n  which the  ramping rate o f  the secondary flow w a s  varied. 
ment o f  resu l t s  indicates that the response time o f  the  unstable combustion 
system was mt  exceeded during ramping of the secondary flow. Although the  
mass faction of aluminum i n  the secondary f l o w  was constant i n  these tests 
the mass faction of aluminum i n  the t o t a l  f l o w  rate varies w i t h  the r a t i o  o f  
secondary t o  primary f l o w  rates. 
t o t a l  propellant flow rate were calculated by simple mass averaging o f  flows 
fo r  the experimental test  conditions. 
along the experimental l i n e  f o r  1/2 percent mass addition t o  the  secondary 
flow. 
cent fo r  the range of flows investigated. 

The predominant e f fec t  o f  aluminum addition is the re -  

The agree- 
Data shown are from several 

Mass percentage values of  aluminum i n  the 

These values a re  shown i n  figme 9 

Mass percentages o f  aluminum in  the t o t a l  flow are less than 1/10 per- 



4 

Also shown i n  figure 9 i s  the  experimental l i n e  f o r  no aluminum addition 
and a ser ies  of constant mass fract ion l ines  pa ra l l e l  to the  no aluminum con- 
dition. These constant mass fract ion l ines  represent one interpretat ion of 
the  experimental results. It is based on the character is t ic  established i n  
figure 3 where a change i n  stabili-by caused by a change i n  hydrogen flow rate 
is resolved by such a pa ra l l e l  l i n e  characterist ic.  This interpretat ion of 
resu l t s  shows that small addition of aluminum powder causes s ignif icant  ef-  
f ec t s  on s t ab i l i t y .  
i n  s t a b i l i t y  equivalent to that of a 25 percent increase i n  hydrogen flow rate 
noted i n  figure 3. 
technique mentioned previously, a 1/100 percent increase i n  aluminum gives a 
s t a b i l i t y  change equivalent to 10' to 20' R decrease i n  hydrogen inject ion 
temperature. 

A 1/100 percent increase i n  the aluminum causes a change 

Using the comparison with the  hydrogen temperature ra t ing  

The ef fec t  of such small changes i n  aluminum concentration on s t a b i l i t y  
appears qual i ta t ively consistent with the sol id  propellant combustor t e s t s  
(1). 
gelled propellants ( 7 ) ,  where mass factions of aluminum of the  order of 10 
percent were needed t o  obtain measurable ,effects  on s t ab i l i t y .  Either the 
s t a b i l i t y  of the two combustors differed great ly  i n  t h e i r  sens i t iv i ty  t o  a 
change i n  damping o r  the  aluminum w a s  used l e s s  effect ively f o r  damping i n  
the gelled propellants e 

The effect ,  however, d i f fe rs  substant ia l ly  from results with metallized 

In the e x t r a p l a t e d  l o w  amplitude region p f  the experimental result;, 
figure 9 shows tha t  mass percentages of aluminum of less than 2/100 percent 
cause a reduction in  s t ab i l i t y .  
low amplitude region is questionable, the result i s  consistent with some of 
the gelled metallized propellants (7)  A destabil izing e f fec t  w a s  noted a t  
low concentrations mder some conditions. The c r i t i c a l  concentration, how- 
ever, w a s  about 20 percent ra ther  than 2/100 percent, 

Although the r e l i a b i l i t y  of the data i n  the 

The destabil izing e f fec t  may be postulated from previous photographic 
studies (3) which shown an oxygen je t  length modulated by periodic variations 
i n  vaporization and erosion rates. 
steady angular velocity provides a process fo r  periodic energy addition (4) .  
Aluminum par t ic les  dispersed i n  the gases act ing on the  je t  may be expected 
to enhance t h i s  osc i l la tory  mass removal process and increase the  gains i n  
the dynamic system. The enhanced process is visualized as a highly repet i -  
t i v e  sol id  par t ic le  impingement on the l iquid Jet  w i t h  subsequent mass removal 
w i t h  each impingement. 
between such increased gains and the  losses caused by par t iculate  damping. A 
difference i n  the e f fec t  of par t ic le  concentration on gains and losses may be 
expected and could give a c r i t i c a l  value of concentration which separates 
s tab i l iz ing  from destabil izing concentrations of aluminum. 

Such modulations i n  the  presence of a 

The ef fec t  on stabil i ty would depend on the  differences 

Secondary inject ion of aluminum powder w a s  an effect ive method of sup- 
pressing transverse mode i n s t a b i l i t y  f o r  the  l iquid oxygen and gaseous hydro- 

/- 
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gen propellant combination i n  a two-dimensional c i rcular  combustjr. S tab i l i -  
zing effects  were observed f o r  calculated mass percentages o f  aluminum i n  the 
t o t a l  combustor gas flow above 2/100 percent. 
noted a t  concentrations below 2/100 percent, 

A destabil izing e f fec t  w a s  
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SYMBOLS 

F j e t  thrust of secondary flow, l b  

PC cornbustor pressure, psia 

(A€'),, peak-to-peak pressure amplitude, p s i  

wh 

Wo 

WT 

hydrogen mass flow rate, lb/sec 

oxygen mass flow rate, ~ b / s e c  

t o t a l  mass flow rate within combustor, lb/sec 
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Figure 1. - Two-dimensional circular combustor. 
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Figure 2. - Experimental test for stability. 
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Figure 3. - Stability rat ing of three operating conditions. 
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Figure 5. - Solid propellant combustor. 
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Figure 6. - Pressure-time trace without aluminum. 
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Figure 8. - Effect of a luminum addition on  stability rating. 
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